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ON THE INITIATION OF DETONATION
IN A ONE-DIMENSIONAL SYSTEM

This Technical Report is meant only for internal review,

as it would be difficult to imagine the contents are not

known to those active in the field. The purpose in writing

it is to provide Institute members with a concise discussion

on the computation of the flow behind a shock leading to

detonation in a one-dimensional system. The computation

would be performed using the method of characteristics, and

this reduction would also be utilized later for our investiga-

tion of the stochastic initiation of detonations. Stochastic

effects might be introduced either as white noise or as

variations in material properties such as so-called "hot spots."

Mathematically these effects would appear as part of the

"driving-terms" in the characteristic formulation. Consequently

the purpose of the present Technical Report is to be viewed

primarily as a supportive document for our research effort on

the stochastic initiation of detonation.

The present deterministic system is supposed to consist

of material whose equation of state resembles that of a

polytropic gas. We assume that the system is originally shocked

by an infinite piston moving at a constant velocity, and that

this shock is sufficient to start certain chemical reactions.

These reactions initiate a detonation front (shock wave), which

in turn will propagate through the system and sustain the chemical

reactions in a zone immediately behind the front. The reaction
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is assumed to transform undetonated substance into a material

with similar thermodynamic properties, plus a certain amount

of heat energy. The rate at which heat energy is released

depends on the local thermodynamic, and progress variables.

At this point we introduce the notations that are used

in this work.

x - distance measured from an original point

t - time measured from the initial point

u - particle velocity

p - material density

T - specific volume, T =10

S - specific entropy

e - specific internal energy

q - heat energy

i - specific enthalpy, i - e + pT

c - velocity of sound

p - pressure

T - temperature

8 - adiabatic constant

C -specific heat at constant specific volume

U - shock velocity

g - do/dt

k1, k2, a1, a2, bl, b2 ' Pop UA' Q, Y, are constants
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Given Data ,- \

UA - piston velocity Va:". --

- density of unshocked gas

Q - energy of formation of detonation products

k1 , k2 - Constants in the rate equation

a,, a2 , b1 , b2 - constants in the iteration routines

y - equation of state constant

too,)1

N, - number of points on each C* characteristic

We also introduce the following notation for derivatives.

3A aA dA =aA aAR tY Ut - u-

1. The Mathematical Model:

In the regions of space-time in which shocks are absent the

flow is to be governed by the following conservation equations.

(mass) Pt + upx + Pux 0, (1.1)

(momentum) ut + UUx + Px 0, (1.2)

(energy) TS - q - +pr (1.3)

Outside of the reaction zone (3) may be replaced by S - 0;

that is the entropy does not change along a particle-path or

stream-line. In the reaction zone it is convenient to express

the energy balance (1.3) by the following.
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q -W Q6 = e + pT, (1.3')

and

8 = g(,p,8), (1.4)

where g(p,p,8) is a function of the density, the pressure, and

the progress variable a which describes the chemical kinetics

of the material.

The questions 1.1, 1.2, 1.3', 1.4 are a system of first

order partial differential of the form,

Li]:= aij + b + c. = 0, (1.5)

(i = 1,2,3,4), (j 1,2,3,4),

where the coefficients a, b, c, depend on x, t, k. A necessary

and sufficient condition is given for the existence of

characteristic directions for this system of equations, that

is "conditions (for the existence of curves Ck, such that a

directional derivative XiLi may be formed in the same direction

as Ck. [1], [2] The necessary and sufficient conditions for

characteristic direction is that the following homogeneous

equations for the Xi be compatible [1], (2]

Xi(aijta -bijx) - O,

xi(aijo, + cixa) - 0, (1.6)

Ai(bijq0
J + Cita) - 0,
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where j = 1,2,3,4. If one sets the determinant of the first

four equations

laijt, - bijxJI - 0,
dx x a

we may obtain an algebraic relation for a-= -. By making

the following association

1 = 0, 02:= U, ¢3 = P, 4:= ,

and formally computing this determinant one obtains

Iat-b(ut C-xa) 2 ut x1 2_Y2(17
aijta - bijxlI (y-l) ut -x 0 ]2 - (1.7)

The characteristics are then given by the equations

uta xa itf W +t c, (1.8)

I0  (uta -xa) 2 = 0. (1.9)

The first two I+, I_, represent the paths of sound waves, whereas

the second two (a double root), I0, are degenerate characteristics

and coincide with the streamlines.

The remaining equations in the system (1.6) give rise to

compatability conditions on the thermodynamic variables in

order that (1.8) and (1.9) be characteristics. Corresponding

to the characteristics I+,- we have the compatability conditions,
P (Y1

1I +pu+ ('l----) (1.10)

a hi
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and corresponding to I0, we have

iI0 : Na = gta. (1.11)

Because the flow is non-adiabatic in the reaction zone

(S # 0) one can not introduce Riemann invariants by integrating

II+,_.

2. On the Numerical Computation of the Characteristics:

In this section we will develop a method by which the

characteristics can be approximated. We shall assume that

two neighboring points P2, P3 are given on an I+ characteristic,

and that PI lies on the I- characteristic through P2. Further-

more, the image points* in the (u,p)-plane, 71, 72, 73 , will

also be assumed known. If the points Pk are sufficiently

close the characteristics, which join them may in general be

approximated by parabolic arcs. In this case, we may write that

on I+, one has

x4- 1:-1 lIxI+ dxjl I
t4-tl 7 I J 4  J1- [u4+c4+uI+ci , (2.1)

or by introducing a bar and double subscript for the average

value at two positions,

* For each point P E (x,t)-plane there corresponds an image
point

e (u,p)-plane, given by the correspondence u :=u(x,t),

p :-p(x,t).

~T -
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x4-x I  -
I+ t4t l (2.2)

The compatability condition, II+, become

U4-Ul ~ + 2Q(' ft4- t l ___(2.3)_

P 4 -P l  4 I JCj
14 14 P4-l (.3

On I-, and II one has respectively

x4-x3 ~_4 3- u - ' 
(2.4)

u43 c4

and

U 4 U3 I~ - 2Q (t 4 -t 3 ) (2.5)
P4 -p3  Pcj34  (c 3 4 4 P3J

In order to obtain a first estimate of u4, '4, S4 , we

replace the secants 7T4 i77, 43 , by the tangent lines at I and

73 , that is by the lines drawn through 71 and 3 with the

respective slopes

(du  - - + 2Q , (2.6)

TPl 1 1IEl

and

du ~J 2Q%, [d1 (2.7)% 3 (i3 F I

The intersection of the tangent lines yields an estimate

for the point 74' 4" #=(u , p*), which we use to estimate

P4, and c4 .

p
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If our material is a polytropic gas, then it obeys an

equation of state having the form,

pe x p~ __ __ __P=('r-1) e xP- (2.8)

where So an appropriate constant. Since, we have an estimate

for P4, knowledge of either S or at 74 implies knowledge of

the other. We may obtain an estimate of S4 by making use of

the degenerate characteristics, 10, II0. Along II0 we have

TSO = P S = QB ='t , (2.9)

((-1)0 CT

or Ss- 7
= L gt (2.10)

v

We estimate S4  S 4* by assuming the streamline passes

through P1 and P4, and then

_-[-i exp (2.11)

t4 1 071 v

and which in turn allows us to approximate . 0 4*. An estimate

for c4 may be obtained from
* -S

* (1) * i- 4 oi. (2.12)
c4 J4 = YP4  Y ( - I ) exp )(PC v l

L v

A point P4 may be found by computing the ratios -
t4 -tl'x4-x 3  *

4 t2 from the approximate values u4 , c4

x 4 -t- - u4 4____- _
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We recall, that in order to approximate S4 at P4 we

assumed that the streamline passed through PI, P4. To improve

this estimate we may compute the slope of 10 at P41 and obtain

the intersection of this line with I+ or I. (See Figure 2).

We call the intersection P5 9 which we estimate by

x4"x d u4 =u 4  (2.13)t4-t5 (-14 =4 u

The value of u, S at P5 may be obtained by interpolation using

the values of u, S at PI' P2, P3. The secant of the !0 through

P4, P5 then has the slope

x 4 = 1(2 .14 )

t4 -t5  2

We may obtain an improved approximation of S4, now using

the difference expression,

- Cv()45 Ie So-S1(
$4-S5 (t4 -t5)[ exp - -- (2.15)

45

where averages are taken from values obtained at P5 and the

first estimates at P4. With this value of S4 we can obtain

another estimate for P4 from the equation of state. Using

these new estimates of P4 , P4 1 S4 etc. We may now improve our

location of 74 in the (u,p)-plane by means of the difference

formulae for secants instead of the tangent approximation.
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If the differences between first and second estimates

appears too large, it is suggested that the procedure outlined

above be repeated. We include at this point details from the

scheme to compute the flow behind the shock, which we assumed

is strong. Furthermore, we restrict our investigation to the

consideration of reaction rates of the form g:= k, exp1 -k2.
lP p

Our scheme consists of three routines which we lable (A), (B),

(C). These are indicated in what follows. We use

(A) for general points,

(B) for piston path points,

(C) for shock points.

We intiate our calculations at point A (See Figure 1), and

calculate

UA U ' A' PA = Po UA uA, A -y- A )2

8 A  0, and gA kl c-k2pA/pA

A = . Then let us use the symbol

3 to indicate a generic variable, i.e. y = U, u,p,o,c,8,g, and

let Yoo = YA, Xoo m U00 too

Use routine (B) to get the solution at point 10.

(here A-l, oo-2, 10=3)

Use routine (C) to get the solution at point IN. Divide C1+ into

N parts and interpolate for the values of the variables, i.e.,

xkj:- Xl0 + (XiN-Xlo)

.2 ___



Y-lN y10'.

yij:= '11 + ()Ojj - x 1 0 ) xlN4x1oI y =t P. cc, U, C, 5,g

Calculate 20, 21... 2N, 30, 31 .. 3N, etc.

OVUR 14

FIUR
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3 0e -

FIGURE 2
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-. xcn 0

A. if Ab 0.

- t- LJ-. t- 0 I

r--

' LJ- I NJ
I- A ~ - A 0 (~ lb

- g *9* Alb

Ak ah. 0 -

C ~ ~ I
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--~4Lu1(0).=u FE --- ) () 4 151 5 2

Subroutine AA I

TEST, X -YES 5

PNOI

I YES

NO 4 TEST, xS2=x 1
or

b1xl<x 2 _<b 2x 2

(Cr - -U1) (jO u NO a (t )< -t'z rj (j1

u 5 1 5 x X2-xl1 1 5 1 t -

TET(-) j (-)N OTS (i-l) (j) (j-l)

a25 1U5 -5 5<a2U5

4YES ADVANCE YES

X2j-XI  t2j-t
__5__1 5 -t 1

P5 = PI+a(P2-Pl )  X5 x5(J)' "5 (i)

55 p 1+9(p2-Q1)

a5 3 1i+6(02-8i )  P5 P1 + X(P2-Pl )

x , u X U. t (1)5 0s 5 ;) +  X('02-01 )

5 5 5 L a5 = 1 + J(s2-61)

r pn+5
I P4 2 P5 A4

S 'gsk5 (1-85)e

wp5
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Subroutine AA (Cont'd)

ITEST, t 3 -t 1  YES t F

INO

T- 1 (j) = 1 4~-4 13 1 (j) (n (j ()
1 3 1-

3~~~~ 1 1X 4

IdI

U,)= +j~)- (u 3u 1) (j).U 4(i)- (U5-u1)
5 1 5 1 x -x 1)5 1 1 t3- 1)

TEST 
TEST 3

a '~-)<~)a U~i NO au(j-1)<U()< il
1 5 -5 - 25 1 5 U5 - 25

YES4

x -x1

P5 - P1 + e(P3 -P1 ) p-p ~p- 1

~5 a j + 9(c 3-1) 5~ 1 ; 3

~ +
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(0)nO () (n ) (n) n
Cal -,g4 4  , 4 , 4

1/2

40 = g 5 0 40 = 4 =

-4

S ET m 1

4()= k4 2 +5 em=5  [ m~145 /2~4

(p 4 )-p - -1)Q ) (5
(m) 55 +

4 4 5  12

((n) (i) (n)
085 + g4 5  (t4  - t5)

_ (k 0(m)

(m)I 1 (1 -84)) *. 45

TET + ( r) (n-i)
-4 -2 -5 4

YES 1L 4~u/ (
TEST_ , g4 ) 4  24 -No ADVANCE(()n

PO P " 0

w uF - .. . ...



A7

,(n) c3 '4+a344

a = a 2 + 4n
24 2
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B PISTON PATH POINT

(0) = 3(o) 0 (o) 0 (o) 0 0
32 2 31 =1 3 -=03

3 A

(0) (0) (o (0)
93 2  =g2 g31  =g t 3 0 93 0

U3 2

(0) = 2 (0) ( 6(2 0 3
c 3 2  2 31 1  3  0

SET Z = 1

B1

4.

t(£)= x2 - x1 + UA tI - (U3 2 - C32(Z-1) ) t2

A -32 3 2

x Z ) =A t3 Ut A t + Ua(t 3 t)

F- p MZ) M. CZ - 1 ) (UAZ-1) (Z-1) (tMz)_t

3 P2 + P32 32 A 2 )+(Y-1)Qp 3 2  932

p -p1 - (Y-1) Q p3 (-- t))

G- o+ 331 1 ) 1

C(C-i) 2 (a3 - 81)[31 ]

a M= 81 + _ (Z-1) (t(0

z ) = k 1  1-8M (t(  -k2  p3 )

33 p ()-
P 3

( 1/2

c 3
1P3
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B2

TEST

a O Z-1)< (Z)< a a Z-1)
a1  3 3 -a 2 z 3

NO = Xt p, P, 3? g YES

' 2 + aZ) 9, SET a23 32

= x, t, p, o, , c
+ M(Z) LIST

31= 1 = p, g, s, c x3' t3 ' P 3 ' P3' g3 ? 33t U3 , c 3ifi
ADVANCE i NEXT POINT

B1
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C SHOCK POINT

INITIALIZATION

(0)
310) = U = +1 (0) 3 2
31 1 C3 ' U32 =3

C (0)= C2 P32 + 2 (0) 0 0)= 0 ~ ) 0
32= 32 0) -

(0) 2U1
932= 92 U 0  - 2= 40) 0, U 0 , u,

3 3+ 31~

SET q °  o =1

S 
_7

x-x + "(q-1) + C(q-1) t 1(q-1) t

x( q )  x 1 + u(q-1) (t(q) _ t)

O E(q - ) (Uq-1) 2) < + (Y-1)Qo32q32 ( E t S

a3 P2 - 33 -2 2 3 23 3~ 2 ~t,

k(/q)Ylp(q 12, 2 q

(q) = 3 2 ()
32q) k1 e 2P q) I 2o--,U, - S E =o c

q < <a a x, t, , U

3~) 2() (q)
OL32 .... ..... ... 3= 0, C , U , g , U SET ot 3 =  a 3 )

'DL= x, t, pp , g , u

LIST
x 3 1 t 3 1 3 qg3 1 u 3 u 3 1 3 3 1 C 3 1 31

cl
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3. The Characteristic Equations in the Steady State.

The description of the one-dimensional, steady-state,

detonation of an ideal gas may be found in [4]. In this section

we shall use their solution in order to obtain the steady

state characteristics, I+,-. These characteristics will be

useful to us in solving for the transcient characteristics

In the undetonated region the specific tnthalpy may be

represented in the form [3]

= T + Q = cpT + Q; (3.1)i0  T_-7 o0 0 +.

right after the shock front (but before any reaction occurs) we

represent it as

i = cY PUI + Q = cpT 1 + Q. (3.2)

By combining these two equations we may obtain the shock condition

i T -(U1+U) (pl-P 0 ) 
(3.3)

p 2

In the steady state situation, the reaction zone will be

seen to move (with a constant velocity D) in a manner such that

there is no time variation of thermodynamic variables in this

region. From the equations of conservation for mass and momentum,

the detonation velocity may be expressed as D = U (3.4)

.___ _ _ __
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In the case of steady state this formula, however, is valid not

only for the pair (pl,Ul) right after the shock, but for any

pair (p,U) in the reaction zcne. From this one obtains a p,U

relation for positions in the reaction zone (the Rayleight-

Michelson line) [3],

P = P0 + 7 (U0-U)(
PO U-7 O-U).(3.5)

0

As has been pointed out by numerous authors; see to name

a few [1]-[4] the three conservation equations (mass, momentum,

energy), plus the equation of state are not sufficient to

uniquely determine the detonation velocity. Howver, by using

the Chapman-Jouguet hypothesis the detonation velocity is given

by

D = u + a at 8 = 0. (3.6)

At a position in the reaction zone, where the fraction of

nonreacting molecules is a the enthalpy may be expressed as,

i pU + aQ; (3.7)

if we combine this with the expression for the initial enthalpy

(before detonation) one has

Y- pU (B-l)Q = 1(38
. +p(Uo+U). (3.8)2i

2 t-iU
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Combining these with the p,U relation on the Rayleigh line (and

assuming p 0 is negligibly small) we obtain p,U in terms of the

progress $, (4]

P ( s ) D1 1 - 2C y - ).l ~ , _ _ _ _ _ (3 .9 )U0 (Y+I)

U(s) = 0 I' D - 2I

It is convenient to introduce local coordinates in the moving

reaction zone, defined by a point transformation from the (x,t)-

plane to the ( ,r)-plane:

E tD - x, (3.10)

T = t-

The variable E is the distance from a position x to the shock

front, whereas r is the time that has elapsed after the front

has passed the point x. We may express and T in terms of 8 by

means of a single quadrature as follows. From equation we have

8 2 g(p,p,8) = g 'U)p(8), 8 - (8), (3.11)

consequently upon integration one has

dl
T dT = J - (8), (3.12)

__OW
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and

an Ed [D-u(3)] d6 E (3) (3.13)
0 1B

where

u(a) = [p(3)-p 0 I [U 0 - (a)] p(6) [ 0- (M) 1"  (3.14)

Elimating B between T = (a) and ( = (3), yields an expression

for E in terms of T, E =t[-l(T).

In the steady-state it is clear that the characteristic

lines, I+, correspond to the straight lines $= constant, or

I+ : x = tD + (-l)L, where L is the reaction zone length. In

order to obtain I_, we return to equation (1.8) I_: dx = u(5)

- a (a), and compute a(a) from

a(3) = -= p()Uv(3), (3.15)

a( T = D + )1 D2

(3.16)
dx

Consequently, on I_, the slope !Lx is given as the following

function of $

dHE + (1- Q] l . 1

_y4I 2(y 2 -1)(1-)Q + ( 1 + - 2(y'-1) (1-O)Q+D - -)

(3.17)
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It is clear from the above discussion that all the "cross-

characteristics," I-, cut the lines a=constant at the same angle,

and hence the I- form a "parallel" family of curves. From the

information connecting , T, and 8 we may start at the shock

front, compute the slope of I_, and then proceed by finite

differences across the reaction zone. The computation of one

cross-characteristic will then yield the entire family.

4. A Progressing Wave Interpretation:

In this section we attempt to solve the system of partial

differential equations (1) (2) (3) (4) in terms of a similarity

variable [1] [41 = xt- . We introduce this variable in order

to reduce a system of partial differential equations to a system

of ordinary differential equations.* We make the assumption

that the solutions u, p, p, have the form

u = axt-1u( ,

p= xk (), (4.1)

and

p = a2xk+ 2t -2p().

In addition we introduce,

and
a 2x2 t 2 pM . a2 x2.t 2

e - y1 n- = y E( ). (4.2)

*We note, however, that these solutions cannot approach the steady-
state case discussed earlier, since here the reaction zone
continues to grow in length.

.. ..... .. ... _- _ 7 7
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Equations 1.1, 1.2 may then be written respectively as

(U-I)Q' + KUO + .1[U+U'] = 0, (4.3)

U(aU-l) + a&Ul (U-i) + C(k+2) P + = 0, (4.4)

where primes indicate differentiation with respect to E. Equation

1.3 becomes

Q-B' = ax2t-2 2(a-1) E - V (U-1)&P' + KUO) (4.5

and then in order for B to be a function of alone we must

have a = 1, or & = 1. Equation 1.4 reduces to

cL(U-l)B' - tg(P,p,S); (4.6)

consequently, for there to exist a similarity solution (progressing

wave) for our case tg(p,p,8) must be expressible solely as a

function of . This amounts to a mathematical restriction on

the type of rate function we may use; however, as we shall see,

it does not impose an important physical restriction. For

instance, it is customary to use rate functions of the form [3]

(41

- m e [ OC (4.7)

where c is an activation energy. In this case equation (3.6)

becomes

a&(U-1)B' - tcm xkt z exp 1 , (4.8)
2 E(&)
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which will be an expression in E alone, if xkZt = or
1 , Z # 0. The system (4.1) - (4.4) then takes on the

form

(u-l) ' - 2 + Q[U+Eu'] = 0,
1

s(U-1) [U+EU'] + EP' + (2- i)P = 0,

Q&2 B ' + &2 p[(U-l) n' - 1 USI] = 0,

and 2 m (l-y) c0
S2(U-l)B' = cBm k exp . (4.9)2 E( )

This system may be solved for the first derivatives U', Q'

P', B', as follows

U' = I _U+cQ2£+IB m exp 1_ 0 Q (4.10)

QI = (U-I CQ_ +2Bm exp[(pY)EOQ (4.11)
-,------ - exp (4 .121E (U-1) P L P

1 p Z+2 m [ Y) E. 2 ) -cQ2 B______ (4.12)

L.(4.13
S(U-1) [.______(.3

The equations (4.10), (4.11), (4.12), (4.13) are a system of four

ordinary differential equations in four dependent variables.

The four equations are essentially different as is illustrated

by solving for U', 9', P', B', and may be solved by numerical

methods.
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